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A Method for Regional Estimates of Evaporation for Use in GIS-Based Dynamic 
Forest Fire Potential Models 

 
ABSTRACT 

 
Dynamic GIS-based spatial depictions of fire potential require daily 

measurements of precipitation and evaporation to characterize regional landscape 

moisture conditions.  Regression models that estimate daily evaporation in the U.S. 

southern region were developed using observations of wind speed, solar radiation, 

minimum relative humidity, and maximum temperature. These weather elements are 

collected in numerous locations where measured evaporation records are not available, 

allowing an estimation of evaporation across large regions. Sixteen models were 

developed and tested for use in both coastal and inland environments. An innovative 

model selection metric was developed, employing R square, Pearson's correlation 

coefficient, average difference between estimated and measured evaporation, root mean-

squared error, and mean absolute error. Models selected included two validated for use in 

inland environments (Best Inland Model—BIM, and an Optional Best Inland Model—

OBIM) and one validated for coastal environments (Best Coastal Model—BCM). The 

selected models are:  

BIM=-0.07912+0.0011(maxT)+0.00007(minRH)+0.00037(SR) 

OBIM= -0.117528+0.00515(maxT)-0.00272(minRH) 

BCM= -0.51+0.009(maxT)-0.002(minRH) 

 

Key words: climate model, evaporation, forest fire, water balance, weather 
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INTRODUCTION 
 

Daily pan evaporation is an important factor in landscape-level water budget 

calculations. It is also an important dynamic variable that should be considered when 

modeling fire potential, making crop management decisions and in other projects 

focusing on water management and conservation. The widely used Keetch-Byram 

Drought Index (KBDI) is designed for assessing fire potential and is related to the 

flammability of organic material in the ground, yet the inputs (daily maximum 

temperature, daily total precipitation, and mean annual precipitation) do not directly 

account for losses of moisture due to evaporation (Janis, Johnson and Forthun 2002). By 

incorporating daily evaporation into fire potential models, more precise calculation of the 

dynamic water budget can be integrated into fire decision support systems. Spatially-

explicit statistical surfaces derived from these precise water budget calculations can 

potentially provide decision information on a regional basis, allowing more effective 

allocation of personnel and equipment necessary for fire suppression activities.  

Acquisition of evaporation data suitable for regional fire potential modeling is a 

challenge. Evaporation data must be easily accessible, spatially well distributed, and 

collected regularly over extended time periods. The predominant measurement method 

utilizes a 48-inch diameter pan that sits above ground known as the Class-A evaporation 

pan. Exclusive adoption of these pans by the National Weather Service is considered to 

be the first attempt to unify evaporation data collection throughout the U.S. (Jones 1992). 

Evaporation pans and associated automated measurement devices are rather expensive 

and are located at a limited number of weather stations around the U.S. and the world. 

For example, in Mississippi evaporation pans are located at only nine locations, and most 
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of them are in the northern two-thirds of the state (Bell 2004). In addition to the relative 

scarcity of collected pan evaporation data, the accuracy of pan evaporation estimates has 

been questioned by numerous researchers (Bruton, Hoogenboom and McClendon 2000, 

Sumner and Jacobs 2005). For example, precipitation events interfere with accurate 

measurement of pan evaporation (Lindsey and Farnsworth 1997). Generally, the pan 

evaporation record must be corrected for any additions of rainfall to the pan. However, 

errors in rainfall measurement and inconsistency in rainfall capture add error to recorded 

evaporation data (Sumner and Jacobs 2005). Finally, evaporation records are often 

acquired seasonally, with more comprehensive data available in the summer months and 

during the growing season. 

All these obstacles make good-quality daily evaporation data difficult to obtain at 

many locations across a large region. In order to fill this void, regional estimates of 

evaporation are needed to produce spatial layers for use in Geographic Information 

Systems-based (GIS) analyses as a part of dynamic climate component in regional fire 

potential models. Many attempts have been made to develop empirical formulas that 

estimate potential evaporation and evapotranspiration. Thornthwaite (1942) stated, “The 

lack of a direct measure of losses by evaporation from natural surfaces has led to the 

development of many empirical formulas for expressing the effectiveness of 

evaporation.” Historical formulas commonly used in the southeastern U.S. include 

Thornthwaite (1948), Blaney and Criddle (1950), Penman (1956) and Pote and Wax 

(1986). These formulas are relatively complex or were developed for application at 

specific locations. For example, the Penman equation requires measurement of net 

radiation, soil heat flux, air temperature, relative humidity, wind speed, and other 
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environmental variables (Sumner and Jacobs 2005). A complete set of these input 

elements that are spatially well distributed over large geographic regions is rarely 

available, which makes evaporation estimates based on the Penman method unfeasible 

for regional fire potential models. 

With recent increased availability of hourly and daily meteorological data from a 

variety of observing networks, estimators of evaporation have been developed using 

“proxy” weather elements as inputs. Hanson (1989) used daily solar radiation, daily mean 

temperature, and wind run to model class-A daily pan evaporation for southwest Idaho. 

Cahoon, Ferguson and Costello (1991) used measured pan evaporation data to determine 

local coefficients for existing equations that estimate pan evaporation using data from 13 

stations in the mid-south and southeastern U.S. Bruton, McClendon and Hoogenboom 

(2000) developed artificial neural network (ANN) models to estimate daily pan 

evaporation using multiple measured weather variables as inputs. The ANN model 

included 14 different meteorological variables and resulted in Rsq of 0.717. ANN models 

were developed also by Terzi and Keskin (2005) to estimate evaporation for the Lake 

District in western Turkey using air temperature, water temperature, solar radiation, air 

pressure, wind speed and relative humidity. Another recent method employed fuzzy logic 

models to estimate daily pan evaporation using air and water temperatures, sunshine 

hours, solar radiation, air pressures, relative humidity, and wind speed for Lake Egirdir in 

Turkey (Keskin, Terzi and Taylan 2004).  

Most of the previously cited attempts to estimate evaporation tend to be complex, 

requiring compound sets of input variables data and complicated calculations. Our goal is 

to obtain regionally-based evaporation estimates that meet four basic criteria: 1) data are 
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readily available and easy to obtain; 2) data are spatially well distributed; 3) estimates are 

sensitive to regional climatic heterogeneity; and 4) data are easily implemented within 

GIS-based models. Consequently, none of the existing methods for calculating 

evaporation meet all four criteria. 

While numerous fire models have been developed in the U.S., efforts have 

generally been oriented towards the western U.S. (Pew and Larsen 2001, WhitlockShafer 

and Marlon 2003). The fire potential model referenced in this study is specifically 

designed to address distinctive conditions of the U.S. southeastern region. Although fire 

potential is generally regarded as lower in the eastern U.S., Mississippi has on average 

3760 wildfires each year that require personnel and resources to extinguish (average 

number of wildfires calculated based on historic fire data acquired from Mississippi 

Forestry Commission). Eastern U.S. physical geography presents unique challenges to 

understanding the processes that result in patterns of fire occurrence.  Potential process 

variables include climate, population density, landscape fragmentation, vegetation 

associations, and landforms. The referenced fire potential model for the U.S. southeastern 

region includes climate (assessment of water budget in the environment during the fire 

season), anthropogenic factors (ignition), vegetation (fuel hazard), and topography 

(modifies precipitation). Figure 1 illustrates the modeling variables and their interactions. 

The method for estimating the critical evaporation component for the model’s dynamic 

water budget variable is the focus of this paper.  

Daily water budget estimates are calculated by accumulating (summing) each 

day’s precipitation minus evaporation (P-E) estimates and comparing these to long-term 

daily averages. Therefore, the water budget variable is an index that is calculated by 
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measuring the daily departure of P-E from the historic P-E averages.  While not a direct 

measure of fuel moisture, this index is representative of landscape moisture conditions 

critical for assessing fuel moisture in the various ‘hour’ fuels that exist in the state of 

Mississippi and the southeastern U.S.  The spatial depiction of cumulative wet or dry 

landscape conditions, used in conjunction with vegetation, ignition, soil, and topography 

provide both a spatial and temporal view of patterns of fire potential.  

Hurricane Katrina reduced billions of board feet of standing timber to ground 

clutter across the Gulf Coast. In the months and years following the event, this downed 

timber can potentially become a vast quantity of fuel for fires in the affected region.  

Availability of regional evaporation estimates resulting from this study can play an 

important role in any assessment of daily fuel moisture conditions.  The water budget 

estimate can also support future efforts to model rates of climatically-driven oxidation 

processes that reduce fuels and aid in ecosystem recovery in the Hurricane Katrina 

impacted regions and throughout any area of the southeastern U.S. that is impacted by 

hurricanes.  

 

MATERIALS AND METHODS 
 
Study area and preliminary analysis  
 

The study area consists of parts of the southern region of the U.S., focusing on the 

areas affected by Hurricane Katrina in the states of Louisiana, Mississippi and Alabama 

(Figure 2). As shown in Figure 2, there are only a few stations in the region that record 

evaporation, and current daily evaporation data at these locations are not consistently 

available. 
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Because of the deficiency of actual daily evaporation data, substituting calculated 

daily historic average values for actual daily evaporation was initially considered. In 

general, evaporation in the region was found to be a fairly constant element with most 

values occurring in an interval between 2.54 mm and 7.62 mm over the period of the 

study (July-October). Therefore the overall mean values for historic and actual 

evaporation should be similar within this small range most of the time. Furthermore, 

evaporation is spatially homogeneous, so daily variability across the region should be 

small. The daily variation of precipitation is much more controlling in a daily moisture 

assessment. According to Bell (2004), the average daily precipitation for July 15th in the 

southern region is 4.572 mm, and evaporation had an almost identical average of 4.826 

mm on that same day. However, the standard deviation of the precipitation data is 9.398 

mm while the evaporation data have a standard deviation of only 1.524 mm. Precipitation 

is therefore over 6 times as variable on a given day as evaporation in the region. 

An initial comparison of actual measured and historic average records indicated 

numerous drawbacks. Figure 3 illustrates a comparison of the 2003 measured actual 

evaporation with the long-term historic average daily evaporation for an inland station 

(Stoneville, MS) and a coastal station (Houma, LA). The graph clearly illustrates that the 

derived average daily evaporation does not conform well to actual measured evaporation. 

It is apparent that the average evaporation fluctuates slightly around the mean value of 5 

mm with a small decline at the end of the study period, while the actual measured 

evaporation is much more variable. Range and variance values are significantly different 

for average and actual evaporation, signifying the fact that average evaporation depicts 

neither low nor high evaporation values accurately (Table 1). This indicates that the 
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average daily evaporation record poorly expresses the specific variability of actual daily 

evaporation as dictated by fluctuating weather conditions.  

Estimation error can be significant when daily differences between historic 

averages and actual measured evaporation are cumulatively summed over a number of 

days. The cumulative differences are important criteria for identification of continuous 

dry periods that are associated with increased fire potential.   

Finally, it is recognized that differences in evaporation rates exist between inland 

and coastal environments. In general, evaporation rates are higher inland than in the 

coastal zone (Wax and Pote 1996). This fact, confirmed in preliminary findings (Table 1), 

was an important aspect of the evaporation modeling technique adopted in this research.  

Methods 
 

The study was carried out in three major stages. The first stage focused on the 

development of simple, representative models, capable of estimating daily evaporation 

for inland and coastal environments in the study region. The second stage included the 

selection of the ‘best inland model’ (BIM) and the ‘best coastal model’ (BCM). The third 

stage involved resolving whether modeled evaporation rates are more accurate than 

available historic averages. These three major stages are illustrated in more detail in the 

methodology flowchart (Figure 4). Finally, each selected “best” model was validated 

through an assessment of these models’ accuracy when compared to the actual measured 

evaporation. 

Stage One: Model Development 

Weather data used to develop and validate models were obtained from 

observation networks of the National Weather Service, the Louisiana Agriclimatic 
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Information Center (http://www.lsuagcenter.com/weather/), the Mississippi State 

University Extension Service (http://ext.msstate.edu/anr/drec/), and the University of 

Utah ‘Meso West’ weather service (http://www.met.utah.edu/mesowest/). Data collected 

included daily observations of pan evaporation, maximum temperature, minimum relative 

humidity, solar radiation, and wind speed from July 1 through October 31 for 2002, 2003, 

and 2004. This period corresponds with the dry summer-fall season of increased fire 

potential in the region. In Mississippi for example, based on 14 years of historic fire 

occurrence data, September and October are the months with the most fires during the 

dry summer-fall season (Figure 5).  

The accuracy of pan evaporation estimation depends greatly on the quality of 

measured pan evaporation data as well as the quality of other meteorological variables 

used to develop models. For this reason, the data obtained were carefully examined 

before the modeling was attempted. Numerous problems were evident with these data. 

The major drawback was that serially complete and homogeneous data are not 

available—weather stations in the study area do not consistently observe and archive 

similar elements. Also, daily pan evaporation records from many stations did not 

correspond with other measured meteorological variables due to difference in time of 

observation. Finally, numerous daily observations were either missing or incorrect.  

Therefore, prior to the analysis it was necessary to address these data quality 

issues. First, all observations were corrected for time-of-observation. Second, missing or 

obviously incorrect values were identified and replaced with an average value calculated 

using records for the preceding and the following day. Third, data histograms and 
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scatterplots were evaluated to identify extreme values and outliers in the data sets. 

Subsequently, atypical extreme values and outliers were removed from the data sets.  

Using the corrected data sets, multiple linear regression (MLR) was used to 

develop evaporation models. Daily pan evaporation data for the years 2002 and 2004 

were used as the dependent variable. Maximum air temperature, minimum relative 

humidity, solar radiation, and average wind speed for the corresponding years were used 

as independent variables.  

Models were created for Louisiana stations (Ben Hur, Houma, Calhoun), 

Mississippi stations (Stoneville, Newton) and one Alabama station (Fairhope). These 

weather stations measure and archive daily pan evaporation that could be used for model 

fitting and cross-validation (Figure 2). These locations were also selected on the basis of 

weather data availability for the years 2002, 2003, 2004, and to satisfy the spatial 

requirements for selectively estimating evaporation for both inland and coastal 

environments. Inland models were created using Stoneville, Newton, Calhoun and Ben 

Hur data, while coastal models were created with Houma and Fairhope data.  

All four independent variables were included in the MLR models and tested in 

terms of their significance to the resulting evaporation estimation. In order to select the 

most optimal combination of weather elements for both inland and coastal locations, 

three different “modeling approaches” were used (Table 2). Approach A incorporated all 

four weather elements as inputs. Approach B incorporated only three input variables 

(average wind speed was excluded). Approach C integrated only the two most commonly 

available elements as input variables—minimum relative humidity and maximum air 

temperature. Solar radiation was not included in the approach C models, since it is 
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available only at a limited number of weather stations in the southeastern region of the 

U.S. Approach C requires the fewest number of variables, and models developed under 

this approach were assessed for under-fitting problems. In general, a slightly under-fit 

model that can be implemented at many locations is preferable to a model that has a 

complete suite of explanatory variables that are available at only a few locations in the 

analyzed region.   

Ultimately, the best inland and coastal models were selected to estimate 

evaporation for these two distinctively different environments. Modeled and historic 

evaporation rates were then tested against the actual 2003 measured pan evaporation in 

order to determine the most accurate method of estimating evaporation.  

Stage Two: Model Selection 

The second stage of the research involved the selection of the best inland model 

(BIM) and the best coastal model (BCM). Inland and coastal models were evaluated 

separately.  Models with highest RSQ values were selected and included in the initial 

selection groups. These models were then evaluated by assessing how accurately each 

specific model predicted evaporation measured in 2003. Inland models were evaluated 

against Stoneville 2003 data and coastal models were evaluated against Houma 2003 

data.  

The following performance measures were used to describe the similarity of the 

predicted and measured evaporation: R square (RSQ), Pearson's correlation coefficient 

(CC), average difference between predicted and measured evaporation (AVG), root 

mean-squared error (RMSE) and mean absolute error (MAE). These performance 

measures were determined for all models in the initial inland and coastal screening 
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groups and were used to compare each model to a hypothetical “perfect” model described 

with the following attributes: RSQ value = 1, RMSE and MAE values = 0, CC value = 1, 

and AVG value = 0. The performance measures were ordinated and weighted according 

to their perceived significance, and actual values were standardized to represent uniform 

value ranges as shown in Table 3. The perfect model for stage two (PM2) can therefore 

be expressed with the following formula:  

PM2=0.4 (RSQ) + 0.15 (CC) + 0.15 (1-10|AVG|) + 0.15 (1-10 RMSE) + 0.15 (1-10 

MAE) = 1 
(1) 

The total score for the perfect model is equal to 1, and scores for other models 

were calculated according to the same formula as shown above using the standardized 

measurement values (Table 3). The calculated scores were then compared, and models 

with highest scores were selected from inland and coastal screening groups respectively.   

Stage Three: Model Comparison with Historic Average 

The third stage evaluated whether modeled evaporation rates were more accurate 

than available historic averages. Values for the performance measures (RSQ, CC, |AVG|, 

RMSE, MAE) from the best-selected models and performance measures calculated for 

the historic averages were compared to determine if modeled or average values were a 

better estimation of the actual evaporation. Determination of the “perfect” model for 

stage three (PM3) did not include RSQ since RSQ was not calculated for historic data. 

All performance measures were weighted equally in stage three, and the following 

formula was used: 

(2) PM3 = 0.25 (CC) + 0.25 (1-10|AVG|) + 0.25 (1-10 RMSE) + 0.25 (1-10 MAE) = 1 
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The estimation method (modeled or average historic values) that yielded the 

highest overall score and therefore the most accurate substitute for measured evaporation 

was selected. If a model was chosen over historic averages, and if that model was not the 

most parsimonious, the optional approach C model (OBIM for inland or OBCM for 

coastal environments) not requiring solar radiation data was chosen (Figure 4). The 

rationalization for this decision is that solar radiation data are not observed at most 

weather stations in the southeastern region of the U.S., especially in Mississippi and 

Alabama, so use of a model requiring this variable would significantly limit the number 

of potential locations where evaporation could be estimated. Using a model with fewer 

variables allows a greater number of point estimates of evaporation. Alternatively, when 

solar radiation data are available, an expanded model can be used.  

Model Validation 

The final phase of the study examined how closely model-estimated evaporation 

approximated actual measured evaporation. To accomplish this, actual 2003 measured 

evaporation was compared with estimated evaporation derived from the models for 

validation. 

 

RESULTS AND DISCUSSION 
 
Stage One: Model Development 

Four independent variables were initially used and tested in three different 

modeling approaches to find the most optimal combination of input variables. These 

modeling approaches, as shown in Table 4, resulted in considerably different RSQ 

values. Approach A, where all four independent weather variables were included, 
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produced highest RSQ values. Approach B, where the average wind speed variable was 

excluded, resulted in only slightly lower RSQ values than approach A. In approach C, 

however, the exclusion of solar radiation caused a significant decline in RSQ values.  

Variables’ coefficients and RSQ values are shown for all models in Table 4. Declining 

RSQ values were associated with the removal of wind and solar radiation as independent 

variables. Coefficients were similar in sign and magnitude.  

In addition to testing different combinations of input variables, scatterplots were 

created to compare each independent variable to evaporation. Maximum air temperature, 

minimum relative humidity, solar radiation, and average wind speed were plotted against 

the evaporation data. Based on the scatterplot analyses, a strong positive relationship was 

observed between evaporation and solar radiation and maximum air temperature. The 

analyses also confirmed an inverse relationship between minimum relative humidity and 

measured pan evaporation. Finally, these analyses indicated no clear relationship between 

average wind speed and measured pan evaporation.  

Approach A was abandoned at this point because wind was measured differently 

among stations and was non-significant as a predictor variable. Its inclusion resulted in 

marginal improvement in RSQ, and likely resulted in model over-fitting (artificially 

inflated RSQ). With the elimination of approach A, the objective was narrowed to create 

models for 2002 and 2004 using approaches B and C. However, at locations where only 

minimum relative humidity and air temperature were available, only approach C models 

were feasible. For instance, Fairhope 2002 and 2004 models were approach C models, 

created without solar radiation data, as these data were unavailable at that location.  
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Numerous evaporation models of approaches B and C were developed to estimate 

inland and coastal evaporation within the study region. The results vary considerably in 

terms of RSQ values. In general, approach B models produced higher RSQ values than 

approach C models, indicating strong contribution of solar radiation as an input variable 

to the models. Even though the approach C models produced higher error of the estimates 

(Table 5), indicating model under-fitting, they have a significant spatial advantage over 

the approach B models, guaranteeing the highest possible number of locations where an 

evaporation estimate can be produced.  

Twelve inland and four coastal models were developed. Fewer coastal models 

were developed due to limited evaporation data at the coastal location (available from 

only two reporting stations). Also, solar radiation data were unavailable for one of these 

coastal stations. The results for inland models are presented in Table 5 and for coastal 

models in Table 6. 

Inland models resulted in comparatively higher RSQ values than coastal models, 

with most values exceeding 0.6 and the highest value of 0.756 for the Newton approach 

B 2004 model. RSQ values for coastal models ranged from 0.587 (Fairhope C 2004) to 

0.389 (Houma C 2004). These inferior results of coastal models are most likely 

associated with poorer data availability, lower data quality, and a larger number of 

missing records.  

Stage Two: Model Selection 

Inland and coastal models were initially screened by RSQ values to reduce the 

total number of models for evaluation. From all inland models, the following six were 

selected for further evaluation: Stoneville approach B 2002, Stoneville approach C 2002, 
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Newton approach B 2004, Newton approach C 2004, Ben Hur approach B and Ben Hur 

approach C 2002.  From this group the best inland model (BIM) was selected using 

equation 1. Performance measures calculated for these models are shown in Table 7. The 

initial screening process for coastal models resulted in the selection of three models: 

Fairhope approach C 2002, Fairhope approach C 2004, and Houma approach B 2004 

model. Performance measures determined for these models are shown in Table 8. These 

measures, highlighted in tables 7 and 8, were used directly in the process of selecting the 

best inland (BIM) and coastal (BCM) models. 

The best inland and coastal models were selected based on performance measure 

metrics using formula 1. In general, the best model was specified by a combination of the 

following characteristics: high RSQ and correlation coefficient values, low values of 

error measures, and a low value of average difference. Tables 7 and 8 show the decision-

making calculations and total scores computed for selected inland and coastal models.  

The highest total score among inland models was achieved by Newton approach 

B 2004 model (0.687). However, this was not the most parsimonious model, so the 

optional model (Ben Hur approach C 2002, 0.578 score) was selected for use at locations 

where solar radiation data are not available. Therefore, the following models are 

recommended for use at inland sites: 

With solar radiation:  BIM= -0.07912+0.0011(maxT)+0.00007(minRH)+0.00037(SR) 

Without solar radiation: OBIM= -0.117528+0.00515(maxT)-0.00272(minRH) 

The highest total score among evaluated coastal models was achieved by Fairhope 

approach C 2004 model (0.576), which was also the most parsimonious model, so an 
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optional coastal model was not selected. For use in all coastal sites (no solar radiation 

data required), the following model is recommended:  

BCM= -0.51+0.009(maxT)-0.002(minRH) 

Stage Three: Model Comparison with Historic Average 

The two best inland models and one best coastal model were further evaluated to 

resolve whether modeled evaporation estimations are superior to historic averages. Table 

9 shows performance measures for best-selected models versus historic average records 

as well as final scores calculated using formula 2. The results indicate that in all cases, 

modeled estimates represent actual evaporation better than historic averages. These 

calculations indicated that for all “best” models, predicted evaporation is superior to 

historic averages.  

Model Validation  

Each “best” model was compared to actual 2003-measured evaporation for 

validation purposes. Figure 6 illustrates validation results of the best inland model 

(created based on Newton 2004 data using approach B), by plotting model results against 

pan evaporation measured at Stoneville in 2003. Predicted evaporation is much closer to 

measured pan evaporation than the historic average (compare to Figure 3). This inland 

model utilizes three variables: maximum air temperature, minimum relative humidity, 

and solar radiation. If solar radiation data are unavailable, the Ben Hur 2004 approach C 

model, which utilizes only maximum air temperature and minimum relative humidity, 

should be used. Figure 7 shows the validation results of this optional inland model. 

Correlation coefficients (Pearson’s R) are higher for both “best” inland models than 
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historic averages, and the predicted values conform to changes in actual evaporation 

better than historic averages.  

The best coastal model was created based on Fairhope 2004 data using approach 

C. This is also the most parsimonious model, using maximum air temperature and 

minimum relative humidity data only. Figure 8 illustrates validation results of the model 

results plotted against pan evaporation measured at Houma in 2003. Predicted 

evaporation is closer to measured pan evaporation than the historic average. Also, the 

correlation coefficient for this model is significantly higher than that of the historic 

average (0.49 versus 0.199), and evaluated error measures of the model are lower than 

that of the historic average. The combination of higher CC and lower error measures 

indicates that it is better to use predicted evaporation estimated from the Fairhope 2004 

model than to use historic average evaporation.  

Overall, mean evaporation decreases during the fall months when daily 

temperature begins to decline. Since these models were developed for the 

climatologically controlled fire season, it is possible (when temperature is low and 

minimum relative humidity is high) to estimate a negative value for evaporation. This 

situation occurred twice in the selected coastal model (Figure 8). To prevent this 

occurrence, negative model estimation was constrained to equal zero, since negative 

evaporation is not possible.  

Validation of model results confirmed initial expectations that evaporation rates 

predicted using selected models are superior to historic evaporation estimates. Modeled 

evaporation for both inland and coastal models reflected actual changes in daily weather 

conditions, while historic averages did not (compare Figure 3 to Figures 6, 7, and 8).  
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CONCLUSIONS 
 

The goal of this research was to estimate daily pan evaporation at numerous 

locations for the southeastern region of the U.S. where such data are not routinely and 

consistently available. Multiple regression models developed using combinations of 

actual measured solar radiation, maximum temperature, and minimum relative humidity 

resulted in useful evaporation estimations. Evaporation estimations based on the best-

selected models proved superior to available historic average evaporation data. As the 

number of input variables was reduced, the accuracy of the models was also reduced. 

However, inclusion of all variables as inputs significantly lowered the number of stations 

that have the potential for such estimation due to data availability. It was concluded that 

minimum relative humidity and maximum air temperature are the minimum required 

variables necessary to create satisfactory models. Even though reducing the number of 

input variables decreased model accuracy, it increased the number of stations with 

weather data available for modeling evaporation. Maintaining a greater number of 

stations was considered of critical importance to the overall project goal, as it assured a 

sufficient number of points for interpolation of evaporation across the entire region—

needed to create a dynamic layer for use in a fire potential model.  

The best evaporation models were selected using a combination of different 

performance characteristics, as neither RSQ values nor error measures alone were 

determined to be satisfactory indicators of the best model. The decision-making process, 

as validated by comparison of predicted and actual evaporation rates, produced three 

easily-applied models—two inland and one coastal—that appear to provide reliable and 

useable daily evaporation data. Depending on whether or not solar radiation data are 
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available for use at an inland site (approach B or C), the following models are 

recommended: 

With solar radiation: BIM= -0.07912+0.0011(maxT)+0.00007(minRH)+0.00037(SR) 

Without solar radiation: OBIM= -0.117528+0.00515(maxT)-0.00272(minRH) 

For use in all coastal sites (no solar radiation data required), the following model is 

recommended: BCM= -0.51+0.009(maxT)-0.002(minRH) 

These selected best models are simple to use since they require minimal inputs 

and they are easy to update on a daily basis. Thus the models offer the opportunity to 

effectively estimate daily evaporation at multiple locations over a broad region. 

The number of metrics employed in creating, testing, and validating selected 

models yields results that provide rigorous and credible estimates of evaporation. Use of 

these models results in evaporation estimates comparable to measured pan evaporation. 

In fact, it is possible that the predicted evaporation rates may produce a more useful 

regional assessment of evaporation because they are relatively free from recording errors 

or missing values, issues commonly found in measured and recorded pan evaporation 

data. This method of estimating missing or spatially deficient daily evaporation data 

should prove useful in regional applications such as a dynamic fire potential assessment 

for large areas of forest affected by Hurricane Katrina in the southeastern U.S., and for 

the southeastern region in general.  
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 Stoneville, MS Houma, LA 
 Actual 2003 Historic Actual 2003 Historic 

Mean 5.25 5.52 4.06 4.54 
Minimum 0.76 2.79 0.25 2.71 
Maximum 10.16 7.37 10.16 6.8 
Range 9.4 4.57 9.9 4.09 
Std. Deviation 1.85 1.11 1.8 0.72 
Variance 3.44 1.25 3.23 0.52 
 

Table 1. Comparison between actual and historic evaporation for coastal and inland 

stations (mm) 
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Variable Modeling  
 Average 

wind 
Solar 
radiation 

Min. 
relative 
humidity 

Max. air 
temperature 

Data availability 

Approach A + + + + Ben Hur, Houma, Calhoun, 
Stoneville, Newton 

Approach B + + +  Ben Hur, Houma, Calhoun, 
Stoneville, Newton 

Approach C + +   Ben Hur, Houma, Calhoun, 
Stoneville, Newton, Fairhope 

 

Table 2. Combinations of weather input variables used in the modeling approaches and 

data availability 
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Performance 
measure 

Description Rank Weight Ideal 
value 

Standardized 
value 

RSQ Explains the variance in the data  
The higher the RSQ value the more 
versatile the model is 

1 0.4 1 RSQ 

CC Indicates trend agreement (model 
conformity) between actual and 
modeled evaporation 
The higher the CC value the better 
model conforms with actual  
Can have trend agreement, but 
different value range 

2 0.15 1 CC 

AVG Overcomes CC limitations of range 
value 

2 0.15 0 1- |AVG*10| 

RMSE Accepted standard model accuracy 
evaluation measure 

2 0.15 0 1- RMSE*10  

MAE Accepted standard model accuracy 
evaluation measure 

2 0.15 0 1- MAE *10 

 

Table 3. Model performance measures, description, ranking, weights and standardized 

value 
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Coefficients Weather Station 
Model RSQ 

B Temp. Rel. hum. Solar rad. Wind 
Stoneville app.A 0.777 -0.132 0.003 -0.0011 0.0003 0.001 
Ben Hur app. A 0.761 -0.147 0.0022 -0.0006 0.0003 0.0079 
Stoneville app.B 0.730 -0.041 0.0028 -0.0014 0.0003 Not used 
Ben Hur app. B 0.707 -0.113 0.002 -0.0004 0.0003 Not used 
Stoneville app. C 0.681 -0.058 0.0046 -0.0023 Not used Not used 
Ben Hur app. C 0.626 -0.1175 0.0051 -0.0027 Not used Not used 

 
Table 4. Results of 2002 models illustrating the difference of inclusion and exclusion of 

wind and solar radiation variables 
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Station App. Year Rsq 
Adj. Rsq. Error of the 

Estimate B Temp. Rel. hum. Solar rad. 

Stoneville B 2002 0.730463 0.723 0.0458 -0.0412798 0.002754 -0.001408 0.000273 
Stoneville C 2002 0.681097 0.675 0.0496 -0.058047 0.004637 -0.002334 not used 
Stoneville B 2004 0.606 0.595 0.0454 0.326 0.00147516 -0.0014418 0.00028 
Stoneville C 2004 0.475 0.465 0.0509 -0.139 0.006 -0.003 not used 
Newton B 2002 no data no data no data not developed not developed not developed not developed
Newton C 2002 no data no data no data not developed not developed not developed not developed
Newton  B 2004 0.756128 0.7499 0.0325 -0.07912 0.001104 0.00007 0.000369 
Newton C 2004 0.52291 0.5149 0.0452 0.02788 0.003586 -0.003236 not used 
Calhoun B 2002 no data no data no data not developed not developed not developed not developed
Calhoun C 2002 no data no data no data not developed not developed not developed not developed
Calhoun B 2004 0.625 0.615 0.0397 -0.163 0.002 0.000069 0.00038 
Calhoun C 2004 0.383 0.372 0.0506 -0.167 0.005 -0.003 not used 

Ben Hur   B 2002 0.706919 0.6947 0.0371 -0.113179 0.001965 -0.000436 0.000324 

Ben Hur  C 2002 0.625995 0.6157 0.0416 -0.117528 0.005147 -0.002723 not used 
Ben Hur  B 2004 0.637 0.6273 0.0439 -0.0175437 0.001219 -0.006585 0.000348 
Ben Hur  C 2004 0.495 0.4863 0.0515 0.181 0.0024353 -0.0038 not used 

 

Table 5. RSQ results of inland models 
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Station Approach year Rsq B Temp. Rel. hum. Solar rad. 
Fairhope B 2002 no data not developed not developed not developed not developed 
Fairhope C 2002 0.569 -0.128 0.005 -0.002 not used 
Fairhope B 2004 no data not developed not developed not developed not developed 
Fairhope C 2004 0.587 -0.51 0.009 -0.002 not used 
Houma B 2002 no data not developed not developed not developed not developed 
Houma C 2002 no data not developed not developed not developed not developed 
Houma B 2004 0.427 -0.402 0.007 -0.001 0.00023
Houma C 2004 0.389 -0.284 0.007 -0.003 no data 
 

Table 6. RSQ results of coastal models 
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Performance measures 

RSQ value CC AVG RMSE MAE 

Inland 

Models  

wght.  St.val. wght. St.val. wght. St.val. wght. St.val. wght. St.val. 

Total 

score 

∑ 

0.73 0.62 -0.057 0.082 0.070 Stoneville 

app. B 2002 0.4 * 0.73  0.15 * 0.62 0.15 * 0.44 0.15* 0.18 0.15* 0.30 

 

0.522 

0.68 0.45 -0.036 0.076 0.063 Stoneville 

app. C 2002 0.4* 0.68 0.15 * 0.45 0.15 * 0.65 0.15 * 0.24 0.15 * 0.37 

 

0.529 

0.76 0.66 0.014 0.056 0.041 Newton app. 

B 2004 0.4* 0.76 0.15 * 0.66 0.15 * 0.86 0.15 * 0.44 0.15 * 0.59 

 

0.687 

0.52 0.42 0.011 0.071 0.055 Newton app. 

C 2004 0.4* 0.52 0.15 * 0.42 0.15 * 0.89 0.15 * 0.29 0.15 * 0.45 

 

0.516 

0.71 0.65 -0.017 0.058 0.043 LSU Ben 

Hur B 2002 0.4* 0.71 0.15 * 0.65 0.15 * 0.83 0.15 * 0.42 0.15 * 0.57 

 

0.655 

0.63 0.45 -0.003 0.069 0.056 LSU Ben 

Hur C 2002 0.4* 0.63 0.15 * 0.45 0.15 * 0.97 0.15 * 0.31 0.15 * 0.44 

 

0.578 

 

Table 7. Decision-making calculations carried out to select best inland model (BIM); 

values of performance measures are highlighted  
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Performance measures 

RSQ value CC AVG RMSE MAE 

Coastal 

Model  

wght.  St.val. wght. St.val. wght. St.val. wght. St.val. wght. St.val. 

Total 

 

∑ 

0.57 0.54 -0.042 0.074 0.063 FH C 2002 

0.4 * 0.57 0.15 * 0.54 0.15 * 0.585 0.15* 0.26 0.15* 0.37 

 

0.491 

0.59 0.50 -0.009 0.067 0.055 FH C 2004 

0.4* 0.59 0.15 * 0.50 0.15 * 0.991 0.15 * 0.33 0.15 * 0.45 

 

0.576 

0.43 0.59 -0.071 0.094 0.082 HM B 2004 

0.4 * 0.43 0.15 * 0.59 0.15 * 0.295 0.15* 0.06 0.15* 0.18 

 

0.340 

 

Table 8. Decision-making calculations carried out to select best coastal model (BCM); 

values of performance measures are highlighted  
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Figures 
 

 

Figure 1. Flowchart illustrating major input variables, data components and processes in 

the fire potential model 
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Figure 2. Map of the study area showing weather stations recording evaporation and 

locations for which evaporation models were created 
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Figure 3. Comparison of actual measured (Stoneville 2003, Houma 2003) and historic 

average evaporation data (Stoneville 1977-2002, Houma 1977-2002) 
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Figure 4. Stages of model development and selection  
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Figure 5. Comparison of average monthly precipitation and average number of fire 

occurrences in Mississippi between 1990 and 2003 (Data sources: National Weather 

Service, Mississippi Forestry Commission) 

 40



 

Figure 6. Comparison of actual measured (Stoneville 2003) evaporation and evaporation 

estimated for Stoneville 2003 using best inland model (Newton approach B 2004) 
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Figure 7. Comparison chart of actual measured evaporation (Stoneville 2003) and 

evaporation estimated for Stoneville 2003 using optional best inland model (Ben Hur 

approach C 2004) 
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Figure 8. Comparison chart of actual measured evaporation (Houma 2003) and 

evaporation estimated for Houma 2003 using best coastal model (Fairhope approach C 

2004) 
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Performance measures 

CC AVG RMSE MAE 

Selected 

models / 

Historic wght. St.val. wght. St.val. wght. St.val. wght. St.val. 

Total 

 

∑ 

0.66 0.014 0.056 0.041 NW B 2004 

0.25 * 0.66 0.25 * 0.86 0.25 * 0.44 0.25 * 0.59 

 

0.638 

0.45 -0.003 0.069 0.056 BH C 2002 

0.25 * 0.45 0.25 * 0.97 0.25 * 0.31 0.25 * 0.44 

 

0.542 

0.42 -0.0105 0.068 0.054 Historic 

inland  0.25 * 0.42 0.25 * 0.895 0.25 * 0.32 0.25 * 0.46 

 

0.524 

0.50 -0.009 0.067 0.055 FH C 2004  

0.25 * 0.50 0.25 * 0.991 0.25 * 0.33 0.25 * 0.45 

 

0.567 

0.20 -0.0187 0.074 0.062 Historic 

coastal 0.25 * 0.2 0.25 * 0.813 0.25 * 0.26 0.25 * 0.38 

  

0.414 

 
 
Table 9. Evaluation calculations carried out to compare results of the best-selected 

models and historic averages; values of performance measures are highlighted  
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